RTCA Development of a New Flammability Test for Electronic Boxes

Presented to: International Aircraft Materials Fire

Test Forum

By: Steve Rehn Date: 6/6/2018

Introduction

- Working on new method to fire test electronic boxes whole, rather than test individual components in Bunsen burner
- Test method based on Telecom Industry test ANSI T1.319
- Will be added to RTCA-DO160H
 - Draft due to committee in Spring 2020
- Focused on refining test method
- Since the last meeting:
 - Changes to draft test method
 - Another scenario for testing air flow limits
 - Proposed example drawings

Programmable Line Burner

- 3/8" stainless steel tube with (11) 5/16" holes places 1/2" apart
- Methane Fuel with variable flow rate controlled by computer program
- Burner holes can be covered for smaller box or lower flow rates

Changes to Draft Test Method

- Added that boxes with small weep holes that are otherwise unvented would not need to be tested
- Added more details to the methane gas flow rate calculation that were previously missing
- Changed the methane flow rate for horizontal circuit boards to be the same as vertical
- Added that capacitors could be the highest concentration of fuel load in an enclosure
- Added that line burner must be placed within 0.375 inch of the vertical PCB or fuel load being tested

- Goal is to determine which box designs will not need to be tested because they don't allow enough airflow to sustain a flame
- Started with 90 sccm methane flame with one burner hole opened and increased up to 1000 sccm
- Started with air-tight box, drilled 1/8" holes until it could sustain a flame, then increase fuel flow rate and repeat
- Tested different box sizes, air hole patterns, and burner locations to be sure to find the absolute minimum

RTCA Development of a New Flammability Test for

Electronic Boxes

- $12" \times 12" \times 10"$ Box
- Tested with burner inserted into the center of the box
- Burner was previously placed at the bottom

- 12.375" × 7" × 3.5" box
- Equal number of air holes on top and bottom
- Compared spread out vs bunched together

- 12.375" × 7" × 3.5" (303 in³)
- 12" × 10" × 10" (1200 in³)
- Air holes spread out on both

- Could add section to test method describing which boxes will not need to be tested
- Make a straight line just to the left of previous graph (to simplify and add a safety factor) to define minimum ventilation required in order for a test to go forward
- Smaller boxes that can not fit the entire burner will have lower limits because they use a lower fuel flow rate
- Any box with an open area less than the defined number for a given initial flow rate will not need to be tested

- Proposed by Alan Thompson from Element
- Thousands of possible configurations so we need basic guidance that can apply to many scenarios

2nd burn in same box

Front View
Position 2: Remove PCB near fuel load (wire bundles, capacitors, etc.)

- Do not remove PCB when testing box with single PCB
- If burner can't fit, must be tested using current Bunsen Burner method

Single PCB

 Box with horizontal PCBs

Remove lowest PCB and insert burner centrally in electrical box

Pass/Fail Criteria

- Discussion at last meeting to place material above the box being tested, and if that material ignites, it is a failure
- The problem is finding a material that will always be the same and obtaining it years into the future
- It also can't be too difficult or easy to ignite
- Another idea is to place a heat flux gauge above the box and define a value that would be considered a failure
 - Lots of testing would need to be done to validate

Future Work and Discussions

- Pass/Fail criteria
 - Can we find a reliable material?
 - Use heat flux gauge?
- Discuss limits on boxes that do not need to be tested
 - Does more testing need to be done?
- Example drawings
 - Changes/Additions

Questions?

Contact:

Steven Rehn
Federal Aviation Administration
William J. Hughes Technical Center
Fire Safety Branch, Bldg. 203
Atlantic City Int'l Airport, NJ 08405
(609) 485-5587
steven.rehn@faa.gov